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A method is developed for investigating the flow stability of perfect gas 
in a channel in which transition through sonic speed takes place in the so- 

called closing shock(q.Linearized equations which define one-dimensional 
nonstationary flow in a variable area channel are used. Unlike the method 
developed in [l - 31 no additional assumptions are made about small varia- 
tion of stationary flow parameters along the section between the closing 
shock and the channel outlet. 

The proposed method is a certain modification of the method of” D -separation” 

[4 ,5] which was already used in [2 ,3]. Unlike in [2 ,3] the construction of Nyquist is 
based on numerical integration of equations which define the propagation of harmonic 

perturbations along the channel ) and ,_ also, on the asymptotic representation of solu - 

tions of these equations for high frequencies. For the determination of the stability re- 

gion results of the analysis of the characteristic asymptotic equation and considerations 
of continuous passing to cases investigated in [l - 31 are used in addition to that method. 
Possibilities of the developed method are illustrated by examples of determination of 

boundaries of the flow stability region in the plane of coefficients of acoustic and entro- 

py waves reflection from the cross section of the channel outlet. Comparison is made 
with similar results of “quasi-cylindrical” [l ,2] and “transonic” [3] approximations 
which shows effectiveness of the latter under conditions of their applicability. We note, 
incidentally, that the additional assumption about slowly varying parameters of a statio- 
nary flow [l - 31 not only substantially simplifies the analysis, but makes it also possible 
to obtain the basic controlling parameters that affect stability. Thus, for instance, in 
the quasi-cylindrical approximation [l ,2] the effect of the channel shape manifests 

itself only by its angle of opening (or contraction) in the closing shock section . The 

“frozen coefficients” approximation is furthermore proposed and tested. It is based on 

the substitution in equations that define perturbation propagation along the channel of 
constants for the coefficients which depend on the longitudinal coordinate. The cons - 
tants are obtained by averaging over the channel length. 

1. Let us consider the problem of stability of one-dimensional stationary flow of 

perfect gas in a channel of varying cross section when the flow at channel inlet is super- 
sonic and at its outlet subsonic. Transition through the speed of sound occurs in the 

*) Editor’s Note. Also called “rear shock wave”. 
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“closing*’ shock at cross section where I = 0 with f the variable measured along the 
channel axis in the direction of flow, At the channel outlet plane (where x = 1) the 
condition of reflection is formulated as the linear dependence between parameters which 
define the incoming and outgoing waves at that plane. 

According to [Z, 31 the analysis of stability of such flow reduces in the case of fair- 
ly considerable times t to the analysis of evolution of the following boundary value 
problem : 

(1.1) 

~+(u-A)~ = a& + a2,L C a2d, g+lJ+- 0 

R, = rpL* - *Yx,, X8 = j&L, - gyx, 

L, = XR, + X’Sl 
s, = (p/L,+ - %$ Yxs, 

(Y = (InF),,, = 2 (M,2 - 1) ill,’ / [2 
+ k - 1) M+W+) 

with fairly arbitrary initial conditions for R, L, S , and x4.. In (1.1) R, L, and S 
are no~tationary perturbations of the left - and right - hand Riemann invariants and of 
the entropy function, respectively ; U and A are stationary values of flow velocity 
and speed of sound ; M - U / A is the Mach number of stationary flow ; x = x, (1) 
is the equation of the closing shock trajectory: coefficients ail are known functions 
of stationary parameters, hence of coordinate x; cp, 9, cp ,9 , p, and fi are known 
unction of&f_ and of the adiabatic exponent ?c of gas ; subscripts “minus” and “plus” 
denote parameters for x = 0 on the ieft and right of the closing shock (gas flows from 
left to right), while subscript 1 denotes parameters at 5 = 1; x. and II are specified 
constants (coefficients of reflection)x8 = f&z8 (t) / dt; P = F (x)is the cross-sectional 
area of the channel: F’ = dF I dx and M’ = dkf / &. Expressions defining coeffi - 

ciems atf, cp, 4% cp ,9 , p and B amear h PI. 
Since (1.1) is a system whose coefllcients are independent of time, it admits so- 

lutions of the form 

R (z, t) = R” (x, it) exp ht, L (x, t) = Lo (x, ;1) exp ht (1.2) 
S (2, t) = S” (st h) exp ht, x, (t) = 5: exp li, t 

where h are eigenvalues of related boundary problem (generally complex quantities), 
and R” (x, a), . . . are their corresponding eigenfunctions and the “amplitude” of 
shock oscillations (the magnitude of the latter is in the considered problem unimpor - 
tam1 l 

In problems of the considered kind eigenvalnes form an infinite discrete sequence, 
while the system of eigenfunctions corresponding to these is not necessarily complete, 
which, generally speaking, does not allow expansions in functions (1.2) for solving the 
related mixed problem with arbitrary initial conditions. Examples of problems with equa- 
tions of the hyperbolic kind with complete and incomplete systems of eigen~nctio~ are 
given in [6]. It is also shown there that even in cases of lack of completeness of related 
system the development of solution is determined by the extreme right-hod eigenvalue 

(in the complex plane b) , This aspect serves as the basis for using solutions (1.2) in sta- 
bility investigations. 
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Equations and conditions that determine in (1.2) functions with superscript “o”are 

obtained by the substitution into (1.1) of appropriate expressions and reduction by 

exp ht. As the result we obtain the following system of ordinary differential equa - 
tions and boundary conditions: 

dR / dx = [(a,, - 3L),R + a,,L + ~13 Sl / (U + A) 
dL I dx = [u,~R + (azz - 3L) L + UzsSl / (U - A) 
dS I dx = - AS I U 

(1.3) 

R, = cpL, - qYxs, S, = cp L, - $Yx, 

Ax8 = pL+ - f3Yxs, L, = XR, + X’S1 

( here and subsequently the superscript “0” for the “complex amplitudes” is omitted). 

In the considered problem the eigenvalues are those complex h for which (1.3) 
admits nontrivial solutions. The disposition of eigenvalues is determined by the coef - 

ficients in equations and conditions (1.3) which, in turn, are uniquely related to the 
channel shape, the Mach number ahead of the closing shock, and the adiabatic expo- 

nent. When all eigenvalues h lie in the left-hand half-plane, the flow is stable. If, 
however, the extreme right-hand eigenvalue has a positive real part, the flow is un - 

stable. For elucidating the question of eigenvalues disposition in the complex plane we 
apply the method which, as already mentioned, is a modification of the known method 

of D -separation [4,5]. 

If the channel shape, the Mach number M_ ahead of the closing shock (or velo- 
city U ), and the adiabatic exponent are fixed, the disposition of eigenvalues is com- 
pletely-determined by the reflection coefficients X and X’. We define D (n) as the 
region of plane XX in which n eigenvalues have positive real parts. Then for X and 

X contained in region D (0) the flow is stable. Since the boundaries of regions D (n) 
and D (n - 1) are represented by curves (the “Nyquist curves”) that correspond to pure 
imaginary values of h, i.e. h = io , where o is a real number, the investigation of 

stability is to be carried out in two stages. First, by some method (e. g., on the basis 

of considerations of continuous passing to cases investigated in [l - 31) we determine in 

the XX -plane some point 0 that corresponds to a steady flow, i.e. which belongs to 
region D (0). Then Nyquist curves are constructed for all- oo< 61 < +oo and the 
smallest neighborhood of point 0 which is not reached by these curves, is determined. 

Since to the Nyquist curves correspondsuch X and X for which system (1.3) has nontri - 
vial solutions, the construction of these curves can be effected by the method described 

below. 
The three conditions in (1.1) that are satisfied for x = 0 and any o make it 

possible to express R,, L,, and S, or their real or imaginary parts R,,, Ri+ , etc. in 
terms of x,. We are interested here in nontrivial solutions, consequently, it is possible 

to substitute for x., any arbitrary nonzero constant. Let us set x, = CL. Owing to the 
problem linearity, the substitution for the specified X8 of any other complex constant 
x,s results in the multiplication of all results by the ratio x80 / IL, which, as can be 
shown, is immaterial in what follows. Substituting into the related conditions in (1.3) 

h = io and x,= /A , and separating in the obtained equalities the real and imaginary 

parts, we find that for x = 0 

R r+ = (BT - IN) Y, Ri+. = 0~~9 Lr+ = PY (1.4) 
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L. 
I+ 

= Co, S,, = (fJq’ - pl#‘) yv Si+ = @cP’ 

The system of differential equations in (1.3) can be rewritten for ?L = io as 

follows : 

dRr 1 dx = (al$, + al&, + alaS, + URi) / (U + A) 

dRi 1 dx = (al,Ri f al,Li + alpSi - COR,) I (U + A) 
(EL, I dx = (a,,R, + %zL~ + v,Jr + OLi) / (U - A) 

dLi 1 dx = (a,,Ri f a,,Li f a,,Si - oL,.) / (U - A) 
dS, / dx = OS’i I U, dSi / dx = -US,. / u 

(1.5) 

Integrating system (1.5) for a fixed o from x = 0, where the unknown functions are 
defined by conditions (1.4), to cross section z = 1, we obtain in that section Rrl, 
R. 21 ,. * * which are functions of w. Substitution of these functions into the reflection 

conditions- the last equality in (1.3)-yields two equations 

:il,~), ~)xR~I (a) f X’S,, (a), Lil (a) = XRil (0) (1.6) 

Solution of these equations for X and X’ yields functions X = x (6~) and X’ = 
x’ (0) which provide the parametric definition of the Nyquist curve. It will be 

readily seen that the described method of construction of the indicated formulas is some 
modification of the method developed in [7] for the determining frequency characte- 
ristics of an air intake channel. 

Note that in this case, as in [l-3], a singular straight line corresponds to w = 0 

[4, 51. In fact, from (1.4) we have Ri+ = &+ = ,Si+ = 0 when w = 0. From this, 
in accordance with (1.5), follow the identities Ri (z) G Li (x) = Si (z) - 0 for 0 < 

x < i. Hence the second of Eqs. (1.5) is identically satisfied when o = 0 , and the 
first is the equation of the singular straight line L,r (0) = x&r (0) + x’S,.i 0% where, 
as previously, LT1 (0), Rrl (0) , and S,.r (0) are quantities derived by integrating (1.5) 
with o = 0 or, rather, they represent subsystems of R,, L, , and S, in (1.5) with 
appropriate initial conditions from (1.4). 

The described method of constructing Nyquist curves is based on the integration of 

system (1.5) of linear equations with variable coefficients which, generally, can only 
be carried out numerically and for moderate o does not present any difficulties (ana - 
lysis shows that it is sufficient to restrict considerations to o > 0 ) . However, the re- 

quired computer time for integrating (1.5) ever increases with increasing w, . The point 
is that solution of (1.5) is of an oscillatory character whose period (with respect to 2 ) 
is of order 0-l. The integration step has to be, consequently, decreased in proportion 
to o-l, and this increases the computation time. This and the necessity to asymptoti - 
tally analyze the behavior of Nyquist curves for o > 1 makes it important to obtain 

an analytic solution of system (1.5) which would hold for fairly considerable O. This 
appears possible owing to the smallness of o-l.One of the possible ways of obtaining 
appropriate formulas obtained in [S] was used in [9], where, however, the simplifi- 
cations due to the possibility of expressing the linearized equations of nonstationary flow 
in the characteristic form (1.1)) were not taken into consideration. Allowance for this 
with its corollary, the use of Eqs. (1.3), substantially simplifies the derivation of solu- 
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tion . Thus the third of Eqs. (1.3) can be integrated independently of the first two, yiel- 

ding 

S(z,X)= ~~~~~~x~(-~~~) (1.7) 

Here and in what follows S, (A), as well as R, (a) Ad L, (A) are, in conformity 

with (1.3) (xS = p) f expressed by 

To obtain the required formulas for R (z, h) and L (x, A.) that would hold for 

f&l>1 and IRehI - 1 we consider instead of the first two equations of (1.3) 
the more general system 

dR i c&Y = &Qr - 3L) R + &ha,& + dlp.Yl f (U + A) 
dt f dx = leAa,,R 4 (uz2 - X) L + a,,SI J (U - A) 

(f* 9) 

where E is a small parameter. When E = 1 / h system (L9) reduces to the corres- 
ponding equations of Il. 3). 

If the solution of (1.9) with function S (5, h) defined by formula (1.7) is sought 
in the form of expansion in powers of E, a system of “separable” linear differential equa- 
tions which admit successive solution is obtained for the coefficients of related expansions. 

After necessary calculations and substi~tion in the derived formulas E = 1 / 3L and 

x = 1, we obtain, neglecting terms of higher order of smallness, the following for- 
mulas : 

R, (A) EEE R (I, h) = rg exp (- hz,) (R, (A) + ?c’S, (h) bl 
- r, exp (- hz,‘)] - h-1L+ (A) (fs - r4 exp ;Zz,r)} 

L1 (A) EL (1,A) = I, exp Xzl {L, (h) + A-W, (A) [II 
- I, exp (- hz,‘)] - h-lL, (A) 11, - .& exp (--- LT,JI) 

(1.10) 

1 1 1 

dX dX 
r,= A+*’ ‘I= A__lJ’ zT’= s s s dX 

(AfU)M 
0 0 0 

1 1 

zi-1 = G + Tlr ro=ew A+u, s al& I,= exp $$- 
s 

0 0 

where, as previously, the subscripts ‘*plus” and “unity” denote parameters at x = 0 
and 5 = 3. , respectively. The condition for Re h formulated above ensures the boun- 
dedness of multipliers at h-r in the right-hand sides of (1.10) when f k f > 1 . In 
addition to these formulas we have in accordance with (1.7) 
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S1 (A) z S (1, h) = 13, (A.) exp (- z,h) (z, = {$) (1.11) 
0 

Passing from numerical integration of (1.5) to formulas (1.10) and (1.11) in con- 
structing Nyquist curves begins from such o = o* ++ 1 for which the relative error of 
related formulas compared to numerical integration results is below some a priori estab- 

lished level. Note that the substitution of (1.10) and (1.11) with R+ (h) , . . . defined in 
(1.8) into the last of equalities (1.3) yields the characteristic equation of the considered 

problem, which is valid for those eigenvalues of h for which 1 h 1 s 1 when 1 Re h 1 
- 1. As in [2,3], the analysis of the disposition of roots of such “asymptotic” charac- 

teristic equation is an obligatory element of stability investigation. Proceeding as in 
[S], it is possible to show that in the XX - plane the stability region of the indicated 

equation is the rhombus 
I xv0 * x cp I < 20 (1.12) 

The above exposition constitutes the basis for determining (in the XX - plane) the 
stability region of any arbitrary stationary flow in a channel with a closing compression 
shock. As already noted, the position of a certain point 0 in region D (0) is deter - 
mined by continuous passing to the results in [l-3], and the stability region is deter - 
mined as the intersection of rhombus (1.12) with the minimal neighborhood of point 0 
which is not reached by Nyquist curves determined by the method described above, In 
the examples considered below for Y > 0 point 0 always coincides with the coordi - 

nate origin (x = x’ = 0). 

2. The stability region boundaries determined in the XX - plane by the method 
developed above are shown in Figs. l-5 by solid lines. Calculations were carried out 
for x = 1.4. 

Fig. 5 

In Figs. 1 and 2 these boundaries are plot- 

ted for U = 1.34 with the velocity related 

to the critical velocity of the stationary flow 
in the channel whose shape is such that 

d In F (I) / dx = [d In F (x) / d~],,~ = Y 

values of Y are indicated by figures at cor- 

responding curves. Similar boundaries for the 
same values of Y shown in Figs. 1 and 2 by 

dash lines were determined with the use of the 
quasi-cylindrical approximation [2]. Solid 
and dash-line boundaries are very close for 
small Y but increasingly diverge with increa- 

sing Y , as expected, since the quasi-cylin- 
drical approximation requires the fulfilment 
of condition 1 Y 1 (( 1. The same tendency 
can be observed in the case represented in 
Figs. 3 and 4, where the dash-line boundaries 
were determined by the method of transonic 
approximation. These results relate to a 
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channel shaped so that M (x) = M++M+ ‘.z which means that the Mach number distri- 
bution of a stationary flow along the channel is linear. In the adduced examples U_=i .I 
and Mt varies from -0.1 to -0.5. Values of M, appear at the curves. 

The last example relates to the flow in annular channel whose cross section in the 

meridional plane w of a cylindrical system of coordinates is shown in the lower part 
of Fig. 5 (dynamics of flow in such channel were numerically analyzed in [lo]). The 
channel cross-sectional area between the shock plane (Z = 0) and the channel outlet 
increases by a factor of 2.33 , and II = 1.34. Since the closing shock (the double line 

in Fig. 5) lies close to the minimum area cross section, the channel angle of opening 
at 5 = 0 is very small (Y = 0.04). However, this channel is by no means quasi-cy - 
lindrical since the quantity d In p i dx “averaged” over the channel length is equal 

0.86. This is also supported by the very pronounced difference of the stability region 
shown in Fig. 5 from the corresponding region (Y = 0.04) in Fig, 1. 

In concluding our exposition we present the results of one more approximate method 
which we shall call the method of “frozen coefficients” . It is based on the substitution 
of coefficients dependent on 5 of the first two of Eqs. (1.3) by constants. Since the 
obtained system with constant coefficients can be solved analytically, such method is 
very attractive. In spite of this, we must state explicitly that the formulation of con- 

ditions of its applicability is difficult. Thus, for example, the freezing of coefficients 
in the case of transonic approximation with M_ + 1 apparently yields less accurate re- 

sults than the theory developed in [S] . To estimate the accuracy of the indicated ap - 

preach special computations in which the appropriate coefficients were taken as averages 
over the channel length were carried out. Results of these computations are shown in 

Figs. 1 - 5 by dash - dot lines. 

The authors thank K. V. Brushlinskii for valuable consultation and V. A. Panin for 
his assistance in this work. 
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